6 research outputs found

    Performance Degradation in Pre-rake Frequency-division Duplex/ Direct Sequence-code Division Multiple Access Systems

    Get PDF
    The transmitter-based pre-rake diversity combining technique reduces the complexity, size and cost of the mobile unit (MU), while achieving the same inter symbol interference (ISI) mitigation effects of rake receiver for direct sequence-code division multiple access (DS-CDMA) systems. The technique is based on preprocessing of transmitted signal relying on knowledge of the channel state information (CSI) before transmission. In most of the previous works, this a priori information is either assumed or estimated for the uplink and the same is applied to the downlink in time division duplex (TDD) systems due to channel reciprocity. In this paper, a method for channel prediction to evaluate the pre-rake system using binary phaseshift keying (BPSK) modulation in frequency-division duplex (FDD) through analytical and computer simulations for DS-CDMA downlink has been proposed. The performance of the system was also evaluated under ideal and predicted channel conditions using different spreading codes. The findings will have widespread applications in defence communication equipment.Defence Science Journal, 2010, 60(3), pp.282-289, DOI:http://dx.doi.org/10.14429/dsj.60.35

    Biochemical Characterization and Evaluation of a Brugia malayi Small Heat Shock Protein as a Vaccine against Lymphatic Filariasis

    Get PDF
    Filarial nematodes enjoy one of the longest life spans of any human pathogen due to effective immune evasion strategies developed by the parasite. Among the various immune evasion strategies exhibited by the parasite, Interleukin 10 (IL-10) productions and IL-10 mediated immune suppression has significant negative impact on the host immune system. Recently, we identified a small heat shock protein expressed by Brugia malayi (BmHsp12.6) that can bind to soluble human IL-10 receptor alpha (IL-10R) and activate IL-10 mediated effects in cell lines. In this study we show that the IL-10R binding region of BmHsp12.6 is localized to its N-terminal region. This region has significant sequence similarity to the receptor binding region of human IL-10. In vitro studies confirm that the N-terminal region of BmHsp12.6 (N-BmHsp12.6) has IL-10 like activity and the region containing the alpha crystalline domain and C-terminus of BmHsp12.6 (BmHsp12.6αc) has no IL-10 like activity. However, BmHsp12.6αc contains B cell, T cell and CTL epitopes. Members of the sHSP families are excellent vaccine candidates. Evaluation of sera samples from putatively immune endemic normal (EN) subjects showed IgG1 and IgG3 antibodies against BmHsp12.6αc and these antibodies were involved in the ADCC mediated protection. Subsequent vaccination trials with BmHsp12.6αc in a mouse model using a heterologous prime boost approach showed that 83% protection can be achieved against B. malayi L3 challenge. Results presented in this study thus show that the N-BmHsp12.6 subunit of BmHsp12.6 has immunoregulatory function, whereas, the BmHsp12.6αc subunit of BmHsp12.6 has significant vaccine potential

    How the re-gained characteristics of self-healing concrete with crystallised admixture and GGBSA are affected by the curing conditions

    No full text
    Fiber reinforced concrete will be subjected to low water-to-cement ratios and extensive fracture exposure as part of a research to examine the capabilities of various add-ons to improve self-healing. An examination of pozzolanic materials' self-healing abilities in light of their mechanical performance is proposed in this work. It was determined that different exposure times ranging from 7 to 42 days might initiate self-healing in the material by applying a through-crack compressive force, wet-dry cycles, water contraction, water immersion, and air exposure. GGBS admixture with 30% demonstrated outstanding compressive strength in all four conditions, according to the results of the investigation
    corecore